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Abstract
Histone Deacetylases (HDACs) catalyze the removal of 
acetyl-groups from lysine residues of a variety of proteins, but 
have traditionally been studied in the regulation of chromatin  
remodeling and  gene expression. Past research demonstrated 
that HDAC inhibition was efficacious in pre-clinical animal mod-
els of heart failure, in which small-molecule HDAC inhibitors 
blocked cardiac remodeling (e.g. hypertrophy) and improved 
cardiac systolic function. Many bioactive compounds found in 
edible plants have recently been shown to inhibit HDAC activity 
that mechanistically impacted inflammation, cardiac hypertrophy, 
and cardiac fibrosis. This new area of research has given rise to the 
study of nutrient-epigenetic-gene interactions, nutri-epigenetics 
in the regulation of human health and disease. Thus, bioactive 
compounds that function as HDAC inhibitors offer promising 
therapeutic strategies for the prevention and treatment of cardiac 
disease and will be discussed in this review.
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Introduction
Cardiovascular disease encompasses a range of conditions that im-
pact the heart, which includes hypertension and myocardial infarc-
tion. In response to stress, such as hypertension, the myocardium 
undergoes remodeling that is characterized by muscle cell hyper-
trophy, apoptosis and fibrosis. Cardiac remodeling often results in 
impaired cardiac function and ultimately Heart Failure (HF) [1]. 

Approximately 5.7 million US adults (>20 yrs) have HF, with 
projections estimating a 46% increase in prevalence rates by 2030 
resulting in > 8 million adults with HF [2]. This increase is due, 
in part, to the growing number of elderly adults in the US, as 
aging is an underlying risk factor for HF. Moreover, with this 
increase in HF prevalence, direct medical costs are projected 
to rise from $21 billion to $53 billion, annually, while indirect 
medical costs are projected to increase from $31 billion to $70 
billion [3]. While HF survival improved from 1979 to 2000, 
due to improvements in standards of care that include treatment 
with β-blockers, angiotensin receptor blockers and Angiotensin 
Converting Enzyme inhibitors (ACEi), five-year mortality rates 
remain high at approximately 50%, with 1-year mortality rates 
for Medicare beneficiaries approximating 29.6% [2]. High mor-
tality rates combined with increased medical costs highlight the 
need for improved therapeutic approaches capable of managing  
and/or preventing this disease [4].

Current HF drugs including β-blockers and ACEi inhibit signaling 
pathways stimulated by cell surface receptors to prevent cardiac 
pump dysfunction [5]. However, redundant signaling pathways 
have been implicated in pathological cardiac remodeling and fail-
ure, suggesting that drugs designed to target shared downstream 
mediators of these signaling pathways would be more efficacious 
for the treatment of HF. 

Epigenetics refers to global changes in gene expression that does 
not alter the DNA sequence. It has been postulated that drugs de-
signed to alter the epigenome have the potential to inhibit many 
shared downstream targets of pathological signaling. Indeed, an-
imal studies have elucidated important functional roles for His-
tone Deacetylases (HDACs) in the heart [4,6-11]. HDACs have 
commonly been characterized in the regulation of nucleosomal 
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DNA where they remove acetyl groups from lysine residues on 
histone tails altering chromatin structure in a manner that con-
fers transcriptional repression. Conversely, acetylation of histone 
proteins on lysine residues by Histone Acetyltransferases (HATs) 

Figure1: Principle mechanisms of chromatin remodeling by lysine acetylation.

for deacetylase activity. Class III is comprised of the sirtuin fam-
ily. Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) 
dependent, where NAD+ is a required cofactor for deacetylase 
activity [13,14].

Class I is comprised of HDACs 1, 2, 3, and 8. Class II is subdi-
vided into class IIa and class IIb, in which class IIa is comprised 

Figure 2: Histone deacetylase (HDAC) classes.
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Histone Acetyl Transferases (HATS) acetylate lysine residues on histone tails resulting in transcriptional activation. Conversely, 
Histone Deacetylases (HDACs) deacetylate lysine residues resulting in transcriptional repression. HDAC inhibitors (HDACi) inhibit 
HDACs from removing acetyl marks from lysine residues and thus alter gene expression.

There are eighteen mammalian HDACS, which are divided into four different classes. Class Ⅰ, Ⅱa, Ⅱb & Ⅳ HDACs are 
zinc dependent HDACs, while class Ⅲ HDACs, also known as sirtuins, are Nicotinamide Adenine Dinucleotide (NAD+) 
dependent.

of HDACs 4, 5, 7, and 9 and class IIb comprised of HDACs 6 and 
10. Class III is comprised of SIRTs 1 - 7. Class IV is comprised 
of HDAC 11 (Figure 2). Studies have shown efficacy of zinc 
dependent HDAC inhibition in heart failure [4,6-11]; therefore, 
this reviewwill focus on zinc dependent HDACs as efficacious 
therapy for the heart.

promotes transcriptional activation [4,12-14] (Figure 1). Eight-
een mammalian HDACs have currently been identified and have 
been grouped into four distinct classes. Classes I, II, and IV are 
comprised of zinc dependent HDACs, where zinc is required
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There is a current shift in today’s population in which natural 
compounds are preferred for use in medicine over synthetically 
produced medications. This has driven an increased demand for 
natural compound discovery as potential therapeutics [15,16]. 
Indeed, synthetic HDAC inhibitors are currently approved as 
well as under clinical trials for the treatment of various cancers. 
However, most of these synthetic inhibitors have shown adverse 
effects and toxicities and are also cost prohibitive [17]. Together, 
this has led to recent interest in bioactive food compounds that 
regulate epigenetic marks in the control of gene expression and 
human health and disease. This review will focus on bioactive 
compound HDAC inhibitors and their potential as therapeutics 
for HF.

HDACs and the heart

Early roles for HDACs in the heart involved findings that class 
IIa HDACs interact with Myocyte Enhancer Factor-2 (MEF2) 
transcription factor family members. MEF2 is upregulated in 
response to cardiac hypertrophy and its expression leads to dilated 
cardiomyopathy [18]. Class IIa HDACs inhibit myocyte hyper-
trophy in vitro and in vivo, as they bind and repress MEF2 tran-
scriptional activity, downregulating cardiac hypertrophic genes 
[19]. Furthermore, deletion of class IIa HDACs (HDACs 9 and 
5) promoted pathological cardiac hypertrophy due to increased 
MEF2 transcriptional activity [20,21].

Later studies highlighted class I HDACs as detrimental to heart 
health. Global deletion of HDACs 1, 2, or 3 results in embryonic 
or perinatal lethality in rodents, while cardiac-specific deletion 
of HDACs 1, 2 or 3 contributed to cardiac hypertrophy and dys-
function as well as metabolic distress [22-24]. While these studies 
focused on loss-of HDAC function, class I HDAC activation is 
not necessarily advantageous in the setting of the heart. For ex-
ample, activation of HDAC 2 has been shown to promote cardiac 
myocyte hypertrophy [25]. This would suggest that class I HDAC 
inhibition, but not deletion, may be efficacious in the heart.

Less is known about the class IIb HDACs in the heart. Most 
studies have focused on HDAC6, where it has been reported that 
HDAC6 activity is increased in animal and human models of hy-
pertension [26]. HDAC6 is a cytosolic deacetylase that has been 
shown to deacetylate microtubules. Microtubule deacetylation 
impacts tubulin polymerization that has been associated with 
cardiac fibrosis. Genetic deletion of HDAC6 protects the heart 
from systolic dysfunction, in part through regulation of sarcomeric 
protein deacetylation and improved cardiac contractility [27]. To 
date, nothing is known about the other class IIb HDAC, HDAC 
10 or the class IV HDAC, HDAC 11 in the heart.

Given the historical observations about class IIa HDACs and the 
detrimental actions for class I HDAC deletion in the heart, it was 
postulated that treatment with HDAC inhibitors would promote 
pathological cardiac remodeling. However, studies have since 
shown that HDAC inhibitor treatment is efficacious in pre-clinical 
models of HF [4,6-11]. These paradoxical findings likely reflect 
three important observations: 1) HDAC inhibitors possess weak 
actions against the class IIa HDACs and therefore do not promote 

cardiac remodeling via MEF2 transcriptional activation; 2) little 
evidence supports deacetylase activity for class IIa HDACs in 
vivo, with evidence demonstrating that class IIa HDACs regulate 
MEF2 transcriptional activity via binding interactions; and 3) in-
hibition of class I HDAC deacetylase activity is cardiac protective 
as opposed to genetic deletion, which eliminates other HDAC 
functions within the cell (e.g., protein scaffolding).

HDAC inhibitors

In 2006, Suberoylanilide Hydroxamic Acid (SAHA), also known 
as Vorinostat, was the first FDA approved HDACi to be used for 
the treatment of T-cell lymphoma [28]. More recently, Romidep-
sin (FK-228) was approved to also treat T-cell lymphoma [29]. 
Valproic Acid, another HDACi is also currently available for 
human use; initially used to treat epilepsy, it has since become 
prominent for other neurological-related ailments [30]. Because 
of this, medicinal chemistry efforts have pushed for the devel-
opment of not only broad spectrum but also class-selective and 
isoform-specific HDAC inhibitors.

Non-Sirtuin HDACs contain a zinc-ion domain for catalyzing 
activity. The classical HDAC inhibitor pharmacophore consists 
of a three-part structure that contains a zinc-binding motif capable 
of binding to the active site, a surface recognition domain that in-
teracts with residues near the active site, as well as a hydrocarbon 
linker that connects the motifs to the domain. Historically, HDACi 
have been classified into four groups: hydroxamic acids, short-
chain fatty acids, benzamides, and cyclic peptides [13,14,31]. 
However, ortho-aminoanilide HDACi were recently discovered 
[32] and imply further undiscovered HDACi groups. Potencies 
and HDAC class selectivity differ with these classes [14].

Hydoxamic Acid HDACi, such as Trichostatin A and SAHA, are 
considered pan-HDACi and possess strong zinc-chelating prop-
erties, which yield potent, low nanomolar, HDACi. Conversely, 
short-chain fatty acids, such as Valproic Acid and sodium butyrate, 
tend to be weak HDACi (millimolar). Their fatty acid physi-
ochemical properties, which allow for advantageous uptake and 
transportation, give promising efficacy, however come with limita-
tions (e.g., nonspecific biochemical targets). Benzamide HDACi, 
such as MS-275, contain a benzene ring as the hydrocarbon linker 
and an amide motif and are characteristically selective for class I 
HDACs (HDACs 1, 2 and 3) [31]. Ortho-aminoanilide is similar in 
structure to the benzamide HDACi. Cyclic peptide HDACi, such 
as Apicidin and Romidepsin, are often highly potent and incorpo-
rate alkyl-linking motifs as well as various zinc-binding groups. 
Similar to benzamide HDAC inhibitors, cyclic peptide HDAC 
inhibitors tend to be selective for class I HDACs. Other HDACi 
are very selective towards specific HDACs, and are generally 
referred to as isoform-selective HDACi; Tubacin, for example is 
considered to have limited selectivity for HDAC6/class IIb [33].

HDAC inhibitors and heart failure

In vivo studies have demonstrated that pan- and isoform-selective 
HDAC inhibitors block and potentially reverse cardiac remodeling 
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extensively [4,6,7,11,34,35]. Treatment with pan-HDAC inhibi-
tors such as TSA, for instance, have been shown to block and even 
reverse cardiac hypertrophy and systolic dysfunction in rodent 
models of aortic constriction. Cardiac myocytes and transgenic 
mice experience significant reductions in cardiac hypertrophy 
after Trichostatin A treatment [36-38].

The pan-HDACi, MPT0E014, substantially represses expression 
of the pathogenic HF-indicators, transforming growth factor beta 
(TGF-β), calmodulin-dependent protein kinase (CaMKIIδ) and 
angiotensin II type I receptor in HF-induced rats, which led reduc-
tion in left ventricular wall thickening as well as increased ejection 
fraction and fraction shortening [39]. MPT0E014 has also been 
shown to reduce inflammation and Peroxisome Proliferator-Ac-
tivated Receptor (PPAR) dysregulation in response to diabetic 
cardiomyopathy [40] of significance, SAHA, an FDA approved 
pan-HDACi, decreased infarct size and improved systolic heart 
function in a rabbit model of Ischemia-Reperfusion (I/R) injury; 
this is important as delivery of SAHA before or during reperfusion 
was efficacious [8]. SAHA, has also been shown to inhibit systolic 
blood pressure, collagen formation, cardiac stiffness, left ventricle 
hypertrophy, action potential duration, and vascular dysfunction 
based off relaxation and contraction force [41].

More recently, we reported that class I HDACs regulated cardiac 
hypertrophy and fibrosis [42,43]. In these reports, we showed 
that class I-selective HDAC inhibition blocked cardiac myocyte 
hypertrophy and angiotensin II-dependent fibrosis. Indeed, others 
have shown that the class I HDAC inhibitor, Mocetinostat, has 
had much success in alleviating and improving HF-related events, 
both in vivo and in vitro [44,45]. Similarly, treatment with class 
I-selective short chain fatty acid HDAC inhibitors, Tributyrin or 
Valproic Acid, inhibited cardiac hypertrophy and fibrosis in a rat 
infarct model [46]. Short chain fatty acid HDAC inhibitor spec-
ificity has been questioned, as these compounds regulate many 
non-HDAC mediated mechanisms and are involved in a number 
of biochemical pathways [30]. Nonetheless, short chain fatty acid 
HDAC inhibitors have been used successfully in humans for other 
ailments and thus have the potential to treat human HF.

Lastly, studies examining class IIb HDACs in the heart have 
focused on HDAC6. Early observations regarding HDAC6 inhibi-
tion demonstrated a role for HDAC6 in the regulation of myofibril 
contractility, in which animals treated with HDAC6 inhibitors 
were protected from systolic dysfunction in response to angioten-
sin II [27]. Others have shown that inhibition of HDAC6 improved 
cardiac function in a mouse model of cardiac proteotoxicity, in 
part, via regulation of autophagy-mediated degradation [47].

Bioactive HDACi

HDACi can be synthetically and naturally produced. Some of the 
more potent and commonly used HDACi have been isolated from 
natural plants, herbs, and food stuffs. The benefits from consuming 
fruits, vegetables, and whole grains have been well-studied and 
well-established [48]; focus has now turned to their underlying 
mechanisms. HDACi, and other compounds, derived from plants, 

herbs, and foods stuffs are known to be bioactive compounds [15]. 
Bioactive HDACi as well as their descriptions and specifications 
can be found in some detail [49,50]. Cyclic peptide and short-
chain fatty acid HDACi are the more familiar types of bioactive 
HDACi. Sodium butyrate, for example, is a short-chain fatty acid 
that is produced by gastrointestinal bacteria via fermentation of 
fibrous foods, i.e., fruits, vegetables, and whole grains. As an 
HDACi, it is selective towards HDACs 1 and 3, class I HDACs 
associated with HF. The previously described Valproic Acid is 
also a short-chain fatty acid HDACi [30]. Treatment with sodium 
butyrate or valproic acid inhibited cardiac hypertrophy and fibro-
sis and increased systolic function in pre-clinical rodent models 
of heart failure [46,51].

Other bioactive compounds from foods have been identified 
that regulate HDAC activity, including curcumin and resveratrol 
[50,52,53]. Resveratrol has been shown to regulate Sirtuins and 
has been extensively reviewed. Curcumin has been shown to reg-
ulate both Histone Acetyl Transferases (HATs) as well as HDACs 
[54,55]. For instance, curcumin was reported to inhibit p300 HAT 
activity thus inhibiting GATA4 transcriptional activation and hy-
pertrophic gene expression; cardiac function was subsequently 
improved in a rodent model of hypertension [54]. Sulforaphane 
is an HDACi found in broccoli and has been shown to inhibit 
HDAC activity and increase histone H3 and H4 acetylation in 
cells, mice and man [50,53,56,57].

While most of these studies have focused on anti-carcinogenic 
actions for sulforaphane, other reports have shown benefit for sul-
foraphane treatment in models of diabetic cardiomyopathy. More 
recently, grape seed procyanidin extract was found to significantly 
inhibit HDAC activity in rat liver, concomitant with reductions 
in serum triglycerides [58]. Indeed, the field of nutrigenomics 
and nutri-epigenetics has rapidly advanced in the last decade 
leading to increased reports demonstrating the potential impact 
for food compounds in the regulation of epigenetic marks and 
gene expression [49,50].

Most of these studies however, have focused on bioactive food 
compounds in the treatment or prevention of cancer [49,50,59]; 
limited studies have examined dietary HDAC inhibitors in the 
regulation of cardiovascular disease.

Recently, we screened several isolated bioactive compounds (131 
compounds) found in plants, herbs, and food stuffs as potential 
inhibitors of HDAC activity in the bovine heart [60]. HDACs 
were specific to the non-sirtuin, zinc-dependent HDACs- class 
I, IIa, and IIb. Of the 131 screened compounds, we reported that 
eighteen inhibited HDAC activity; these eighteen compounds are 
described in (Table 1). Lysine-acetylation marks were also as-
sessed; the bioactive compounds emodin, gossypol, luteolin, and 
quercetin dihydrate were shown to increase histone acetylation, 
suggesting potential therapeutic efficacy for these compounds in 
models of cardiac remodeling and failure. These studies are cur-
rently underway. Combined, these data argue that dietary HDAC 
inhibitors, regulate gene expression(Figure 1) in a manner that 
benefits heart health.
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HDAC class INHIBITEDBioactive Compound
I Apigenin

I, IIaBaicalein
I, IIa, IIbBaicalin

I, IIbBerberine HCl
I, IIa, IIb Caffeic acid
I, IIa, IIb Dihydromyricetin
I, IIa, IIb Emodin
I, IIa, IIb EGCG
I, IIa, IIb Gossypol

IIb Hematoxylin
I, IIb Indirubin

I, IIa, IIb Kaempferol
I, IIa, IIb Luteolin

I, IIa Morin hydrate
I, IIa, IIb Myricetin
I, IIa, IIb Myricitrin

IPalmatine
I, IIa, IIb Quericetin dihydrate

Table1: Dietary HDAC inhibitors. The table represents the eight-
een compounds isolated and assessed for HDAC activity inhibition 
for class I, IIa, and IIb.

 Future directions

HDAC inhibitor therapy is efficacious and prevalent in pharma-
cology (e.g., Vorinostat, Romidepsin, and Valproic Acid); how-
ever, most studies have focused on HDAC inhibitor therapy in 
humans for the treatment of cancer and neurodegenerative-related 
disorders such as epilepsy and depression [61]. While HDAC 
inhibitors appear efficacious in pre-clinical models of HF, future 
studies regarding the role for pan-, class- and isoform-selective 
HDAC inhibitors on human pathology and metabolism are war-
ranted and require further investigation. Vorinostat (SAHA) poses 
a potential option for the treatment of human HF due, in part, to 
its therapeutic efficacy in rabbit I/R, which established a large 
animal proof-of-concept and set the stage for future clinical trials 
in humans [8]. In addition, SAHA is currently approved by the 
FDA for treatment of cutaneous T-cell lymphoma [41].

While drugs like SAHA require FDA approval, bioactive food 
compounds such as sulforaphane have less FDA oversight due 
in part to the DSHEA act of 1994. This argues that bioactive 
food compound HDAC inhibitors have the potential to see hu-
man studies more readily than current HDAC inhibitor therapies 
examined. Sulforaphane is an HDACi found in broccoli and has 
been shown to increase circulating acetylated histones, 3 and 4, 
in healthy humans [53]. These studies were performed acutely 
(< 24 hrs) and no other variables were measured including heart 
function. However, these data argue that sulforaphane passed 
the intestinal epithelial barrier to inhibit HDAC activity in the 

blood. Future studies examining sulforaphane supplementation 
or broccoli feeding in HF patients would be of particular interest, 
in which blood diagnostics examining circulating Atrial Naturetic 
Factor (ANF), a classical HF biomarker, as well as echocardiog-
raphy for cardiac wall thickness and function could be employed.

Conclusion
The effect nutrition has on epigenetics has been termed nutri-epi-
genetics [62]. Nutri-epigenetics has been extensively studied in 
the cancer field. Because of this, bioactive HDAC inhibitors in 
fruits, vegetables, herbs, and food stuffs are being delineated at 
an exponential rate. The potential for newly found compounds 
is limitless as there are many types including polyphenols and 
flavonoids in a variety of plants, herbs, and food stuffs. Their 
possible application in overall pathogenesis, including HF, de-
serves further investigation in the scope of epigenetic modification 
as well as other underlying mechanisms. Lastly, bioactive food 
compound HDAC inhibitors offer exciting opportunities for drug 
development as well as prevention and treatment strategies for HF.
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