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Abstract
Electrocoagulation (EC) process is a highly performant 

technique for treating water particularly in terms of 
killing pathogens, especially viruses. This paper discusses 
briefly some recent advances in removing viruses from 
water. Routes of bacteriophage reduction due to EC were 
discussed throughout the literature. Physical elimination 
was mainly attributed to embodiment in flocs; however, 
demobilization was firstly linked to ferrous iron oxidation. 
Removing bacteriophage for any method working on iron 
has to be seriously viewed because of more important 
vulnerability of bacteriophages to demobilizing through Fe2+ 
oxidizing. Through juxtaposing the traditional treatment 
via FeCl3(s) as coagulant and Cl2(g) as disinfection agent, 
the EC-electrooxidation (EO) approach was observed less 
performant in typical surface waters but more performant 
in typical groundwaters. In many usages, consecutive EC-EO 
was useful, still real aspects such as free radicals remaining 
in water risk to overpass the combined process inherent 
advantages. More research concerning both virus removal 
and pathogenic bacteria remains to be performed in the 
perspective of a large industrial usage of EC process.
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Introduction
Treating water electrochemically remains promising 

like a viable choice especially for conventional approaches 
depending on chemical coagulation and disinfection 
particularly in small-scale water devices [1-4].

Electrochemical oxidation, or electrooxidation (EO), 
employs stable electrodes to directly oxidize pollutants at 

the electrode exterior and/or produce oxidants in water 
[5]. Usually, boron-doped diamond (BDD) electrodes are 
utilized in EO laboratory experiments thanks to BDD’s 
elevated resistance to chemical and thermal decomposition 
and low inclination to react with solvents [6,7]. EO using 
BDD is able to kill organisms via either the generation 
of reactive oxygen species (ROS) from electrochemical 
water decomposition or free chlorine and chlorine dioxide 
formed from oxidation of chloride [8-12]. If chloride is not 
present, hydroxyl radicals at the electrode exterior are the 
main oxidant species, and disinfection occurs via pathogen 
transport and sorption to the electrode exterior [13,14]. 
The efficiency of BDD disinfection augments frequently with 
the concentration of chloride in the solution [11,12,15,16]. 
Augmented disinfection in the existence of Cl- ions can imply 
that chlorine species are more significant to BDD treating 
juxtaposed to ROS. On the other hand, chlorine can possess 
an interactive impact on ROS formation, with more ROS 
produced in high chloride matrices [12].

Researchers [17,18] employed an integrated technique 
utilizing EO with BDD accompanied by electrocoagulation 
(EC) for Escherichia coli removal. EC is the in-place production 
of coagulant species in the water thanks to oxidation of a 
sacrificial anode, usually Al or Fe [19-21]. EC has been applied 
as a pretreatment method for elimination of colloids and 
natural organic matter in diverse usages [22-26]. Moreover, 
EC is a performant technology of virus removal [27]. The 
main route of EC is frequently viewed to be identical as 
conventional coagulation, i.e., physical elimination through 
charge neutralization or sweep flocculation [27-29], even if 
researchers such as Ghernaout et al. [1,30-32] and Boudjema 
et al. [33] mentioned the huge contribution of the electric 
field. Nevertheless, EC may as well demobilize viruses and 
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discussion to get better comprehension of the EC and EO 
usage as water treatment technology especially in terms of 
pathogens removal.

EC and EO for Killing Viruses
Heffron et al. [4] performed an excellent investigation 

in which they assessed Fe-EC as a pretreatment for killing 
waterborne viruses through BDD-EO. Firstly, they analyzed 
the impacts of pH, natural organic matter, and colloids on 
virus removal via EO. They examined the effect of Fe2+ on 
EO with a view to designing an efficient remediation series 
employing consecutive EC and EO. Moreover, they tested 
a consecutive EC-EO treatment train for removal of two 
bacteriophage surrogates and echovirus in four synthetic 
water matrices representing a range of source waters. 
They compared the EC-EO device to a more traditional 
treatment train including conventional coagulation and Cl2(g) 
disinfection (Figure 1).

Heffron et al. [4] defined both a foundation for employing 
a new, consecutive EC-EO treatment train for potable 
water and minutely assessed treatment efficiency for two 
bacteriophages and a human waterborne virus. Despite 
the fact the EC-EO treatment setup suggested in their 
investigation was not useful in all water matrices, the 
enhanced virus removal attained by EC-EO in model surface 
waters attracts more focus. The advantage of EC-EO was 
possibly not attributed to iron improved oxidation. On the 
other hand, bigger virus removal detected in the EC-EO 
treatment train was possibly obtained via the complementary 
influences of real elimination by coagulation/filtration, 
ferrous iron-based disinfection, and EO disinfection.

bacteria through the formation of free chlorine or Fenton-
like reactive intermediates because of Fe2+ oxidation [34-39]. 
Fe-EC produces Fe2+ in solution via oxidizing a zero-valent 
Fe anode [40,41]. Oxidizing ferrous ions to ferric (Fe3+) may 
produce intermediate oxidants capable of demobilizing 
viruses [36,37]. Virus deactivation because of Fe-EC is more 
dominant in moderately acidic waters (~pH 6); however, 
real elimination is the prevalent fate of viruses in Fe-EC 
for pH>7 [35]. In a hybrid EO-EC reactor, researchers [18] 
observed that Fe electrodes were more efficient in removing 
E. coli compared to Al electrodes. They explained the greater 
elimination showed with Fe electrodes by the generation of 
a passivation film on Al electrodes, even if the probability of 
E. coli demobilization because of Fe oxidation was not tested 
[4].

Disinfecting water using EO has been largely studied 
with a view to removing microbes [12,13,15,17,42-44]; 
however, virus elimination using EO has attracted relatively 
insignificant focus [45-47]. Both bacteriophage MS2 and 
recombinant human adenovirus have been observed to be 
more reluctant to electrochemical disinfection juxtaposed 
to E. coli and Enterococcus [47]. In fact, microbes cannot be 
exact measures of virus removal through EO, so the shortage 
of data about virus removal by means of EO is a crucial failure. 
In addition, EC stage in front of EO can present benefits 
for virus elimination, but it has not until now completely 
evaluated.

This short communication focuses on the recent findings 
of Heffron et al. [4] work published this year. Their other 
new and excellent researches [27,35,36] need more deep 
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Figure 1: Comparison of traditional coagulation/chlorination treatment train to the EC-EO treatment train for removing 
bacteriophages MS2 and FX174. “Traditional” treatment composed of FeCl3 conventional coagulation (22 mg/L Fe) 
assisted by NaOCl disinfection (6 mg-min/L Cl2). EC-EO was performed around the optimal division of 150 C/L in the 
EC-EO treatment train (25% EC for LM and MR, 50% EC for DO and SA). LM ¼ Lake Michigan, MR ¼ Mississippi 
River, SA ¼ Sandstone Aquifer, and DO ¼ Dolomite Aquifer model waters. Each column shows the mean values of 
triplicate trials with ± 1 standard error presented by the error bars [4].
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Mechanistic Insight into Virus Re-
moval During EC 

In order to ascertain why several bacteriophages 
revealed deactivation thanks to EC, Heffron et al. [35] studied 
the routes of bacteriophage reduction. The comprehension 
of the cause why Fe2+ demobilizes various bacteriophages 
can assist in the choice of the better virus surrogates or 
distinguish more sensitive pathogen targets (Table 1). 
As illustrated in Figure 2, ferric chloride coagulation and 
ferrous chloride coagulation fairly divined if demobilization 
or physical elimination was the controlling bacteriophage 
destiny in EC, while adsorption to preformed flocs and EO 
were not crucial routes. Former works [36,37,48] have 
established a relationship among oxidation of Fe2+ and 
bacteriophage demobilization. For that reason, traditional 
coagulation with FeCl2 was predicted to attain deactivation, 
while the already oxidized ferric coagulant (FeCl3) should 
obtain only physical removal.

More details may be found here [35]. These researchers 
performed an excellent investigation on the pathways 
of virus removal and acceptability of bacteriophages as 
surrogates in potable water treatment employing Fe-
EC. However, a deep study taking into account both real 
surface water parameters and sophisticated microscopies 
instruments would be very useful.

Following the current intensity as a function of applied 
voltage variation and the pertinent literature, three 
mechanisms have been proposed for acid, neutral and 

alkaline pH [49-51]. For pH 2, Mechanism #1 explains 
Fe(OH)2(s) formation; for pH 7, Mechanism #2 concerns both 
the varieties Fe(OH)2(s) and Fe(OH)3(s) production; and for pH 
12, Mechanism #3 is characterized by Fe(OH)3(s) apparition 
(Table 1). From these results, it can be seen that there is 
an extremely high dependence of iron species on pH in EC 
system.

As mentioned above, virus removal due to the fact that 
Fe-EC is more dominant in moderately acidic waters (~pH 
6); however, real elimination is the prevalent fate of viruses 
in Fe-EC for pH>7 [35]. Considering Table 1, for pH 2 there 
is Fe(OH)2(s) formation and for pH 7 the Fe(OH)2(s) and 
Fe(OH)3(s) production is considered.

For the future researches, it may be suggested here to 
follow pH interval one by one (pH 1; 2; etc. until pH 12) to 
better distinguish the pH impacts on disinfection.

EC future trends
As seen above, EC is an option to traditional coagulation, 

during which the coagulant is given by dissolving sacrificial 
electrodes under an applied electric field [52]. The easiness 
of process and the secondary phenomena implying the 
formation of gas bubbles are the main benefits. Even if the 
laboratory design of an EC cell is extremely easy, its scale-
up is not as simple especially for large water treatment 
plants. It is not frequently ready to employ tank cells with 
sheets of Fe and Al, and there is a necessity to employ cheap 
materials as sacrificial electrodes. Employing low-quality Fe 
or Al may enable bipolar electrode configurations to be used. 
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Figure 2: Routes of bacteriophage reduction thanks to EC, conventional coagulation, adsorption and EO. 
Demobilization and physical elimination were compared between EC, chemical coagulation with ferric 
chloride (FeCl3), chemical coagulation with ferrous chloride (FeCl2), flocs produced via EC prior to the 
addition of bacteriophages (pre-formed floc), and EO with inert titanium electrodes (Titanium). Asterisks 
indicate a significant difference in log reduction from EC due to physical removal (blue asterisk) or 
inactivation (yellow asterisk). Error bars represent standard error of the mean of triplicate tests [35].
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Integrating EC with free radical assisted processes (e.g., EO) 
remains an encouraging method to promote its implantation 
at full scale [52].

Conclusions
The main points drawn from this work may be given as:

Few investigations have evaluated EC and EO one by one 
for virus removal, and Heffron et al. [4] have studied an EC-
EO method for virus removal. They determined a foundation 
for employing a fresh, consecutive EC-EO treatment train for 
potable water and minutely assessed treatment efficiency 
for two bacteriophages and a human waterborne virus. 
Though their EC-EO treatment device suggested was not 
helpful in all water matrices, the enhanced virus removal 
obtained by EC-EO in model surface waters attracts 
additional interest. The advantage of EC-EO was possibly not 
due to Fe improved oxidation. Rather, bigger virus removal 
detected in the EC-EO treatment train was probably attained 

by the additive impacts of physical elimination through 
coagulation/filtration, ferrous iron-based disinfection, and 
EO disinfection.

Integrating EC with free radical assisted processes 
(e.g., EO) remains an encouraging method to promote 
its implantation at full scale. This due to the fact that the 
contribution of each process is complementary to the other 
one.

More research concerning both virus removal and 
pathogenic bacteria remains to be performed in the 
perspective of a large industrial application of EC process.
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