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Abstract
During the two last decades, electrocoagulation method (EC) 
was the focus of many industrial applications and remains a fas-
cinating domain of research. Most published researches concern 
uses in treating potable water and wastewaters to increase both 
the removal of dissolved and undissolved contamination. Signifi-
cant achievements have been realized comprising participations 
to fundamental comprehension, electrode metals, working pa-
rameters, device conception, and economic aspects determina-
tions. Despite the fact that there are several benefits mentioned 
through the specialized references, the EC large-scale use is not 
until now viewed as a recognized wastewater technique due to 
the absence of viable models used in designing device. The pres-
ent review discusses the mechanisms involved in the EC process 
and opens a broad perspective on its modeling. The scientific 
community is near to suggest empirical/theoretical models to 
present the EC technology as a viable green process. However, 
more great efforts remain to be accomplished. Technological 
software developers such as COMSOL™ Multiphysics are invited 
to insert the EC process in their electrochemistry module to bet-
ter commercialize this intensified technique and encourage its 
massive use through the world.
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Introduction
Preserving water resources becomes one of the humankind 
greatest challenges [1,2]. It has to treat many problems such as 
population growth, deforestation, rapid urbanization, industrial-
ization and warming global climate change [3-5]. Now, the avail-
ability of potable water is restricted and not assured [6]; water 
contamination may significantly affect aquatic ecosystems and 
the accessibility to healthy freshwater [7]. Consequently, there is 
a necessity to promote performant techniques and methods for 
depolluting and controlling used waters [8], to preserving wide-
ly quality and increase quantity whereas assuring environmen-
tal safeguard [9,10]. At the same significance, more performant 
potable water processes treatment is needed to monitor hazards 
developed by ecological pollution [11-13]; as an illustration, ex-
istence of nitrate or fluoride ions at elevated levels [5,14].

The electrocoagulation (EC) technique may be employed for 
treating potable water and depolluting wastewater [15]. EC in-
cludes producing cationic metallic species inside the reactor 
through accelerated corrosion of consumable metallic anode 
induced via electric power exercised over the plaques [16]. Fol-
lowing the water acidity, the metallic cations formed electro-
chemically are instantaneously subjected to aquatic hydrolysis, 
producing different metallic forms comprising hydroxide flocs 
(eliminating contaminants through adsorption/settling). Usual-
ly, aluminum and iron metals are employed as electrodes due to 
several benefits: they are abundantly available at low cost, their 
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respectively) valence that conducts to a performant elimination 
of contaminant [17-19]. Moreover, concurrent cathodic reaction 
lets contaminant elimination either upon attachment on cathode 

pole. In a general manner, the anode and the cathode materials 
are selected from the identical metal, even if electrochemical dis-
solution should happen exclusively at the positive pole.

Usually, electrochemical coagulation is performed in two con-

number of cases where EC was successfully applied [21,22]. 
Relatively, EC is an ancient technique, at the same age as elec-
tricity [22]. Employing this electrochemistry-based method 
in treating potable water factories was mentioned during the 
19th century in UK, and treating wastewater factories [23] in 
the United States in the dawn of the 20th [24]. In the late 30s, 
this electrical process has been substituted by conventional co-
agulation [25,26] and by biological techniques for eliminating 
colloids and dissolved organic matters in wastewater, respec-

indeed, the cost of electricity at this time was insupportable. 

have been shown once again from the 80s. Several advantages 
have been mentioned in the written works [28] with the par-
ticular disadvantages of EC comparatively with competitive 
techniques, as listed in (Table 1). However, EC is known for 
additional problems than those mentioned in Table 1. As an 
example, the requirement for sludge treatment, even if conven-
tional coagulation [29] and activated sludge method have to 

-
stitution of EC sludge is similar to that formed employing con-
ventional coagulation [30,31] when either Al2(SO4)3.18H2O or 
FeCl3
identical. On the contrary, a particular problem of EC is that, 
until recently, there are approximately no detailed surveys of 
EC modeling for treating water [5].

Disadvantages
General technique Requires repair
Treats potable water and used water Electrode passivation over time [5]
Integrates oxidation, coagulation, and precipitation
(conducting to minimal capital costs [28])
Decreased requirement for chemicals (substituted with 
metal electrodes and electric power) [32] Lack of systematic reactor design [24]

Reduced operating expense

Minimal sludge formation
Without moving parts [5]
Reduced power needs
Solar energy may be employed [33]

Table 1:

Consequently, this work aims to abridge, debate, and examine 
breakthroughs on modeling methods realized for simulating 

-
mental process variables and device conception characteristics 

features. Subsequently, the principal techniques and design ap-
proaches will be assessed and associated with the techno-eco-
nomic study of the EC method. Ultimately, several views for sub-
sequent investigation and progress will be proposed.

Hypothetical Context of EC Technique
EC merges distinct mechanisms that may be electrochemical 
(metal dissolution and water reduction, pollutant electrooxida-
tion or electro-reduction, etc.), chemical (acid/base equilibria 
with varying pH, hydroxide precipitation, a redox reaction in the 
solution, etc.) and physical (physical adsorption, coagulation, 

-
cessively or in parallel (Figure 1). Figure 1 focuses on the intri-
cacy and the interaction among the routes of the electrochemical 

EC reactions

During the electrochemical coagulation technique, metal species 
are formed inside the recipient through dissolving electrochemi-
cally the metallic plaque, frequently in Fe or Al [5].

• At the anode, the metal is oxidized into cations:

M → MZ+ + Ze-     (1)

In Equation (1), Z is the number of electrons carried during the 
anodic dissolution phenomenon per mole of metal. In the situ-
ation of an elevated anode potential, there is a great probability 
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Figure 1: Mutual actions happening inside the EC device [36].

that auxiliary reactions may happen [37,38]. Moreover, oxida-
tion of water may conduct to hydronium cation and oxygen gas; 
in addition, if the chloride anions are present, they may be oxi-

take part in oxidizing the soluble organic matters or can conduct 
to generating ClOH that as well functions as an oxidizer [5,39].

2H2O → O2 + 4H+ + 4e- (E° = 1.23 V/ENH)  (2)

2Cl- → Cl2 + 2e- (E° = 1.36 V/ENH)                  (3)

Cl2 + H2O → ClOH + Cl- + H+   (4)

• At the cathode: water is reduced into hydrogen gas and 
hydroxyl anions:

3H2O + 3e- → (3/2)H2 + 3OH- (E° = 0.00 V/ENH) (5)

-
ode may be computed employing Faraday's law (Equation 6). 
Consequently, the amount of metal m depends on the residence 
period t and the electric current I [5]:

       

Itm M
ZF

φ=
                                                            

(6)

In Equation (6), M is the atomic weight of the electrode metal, 
and F is Faraday's constant. Nevertheless, Faraday's law (ϕ=1) 
is correct if all the electrons in the reactor take part exclusively 
in the metal-liberation phenomenon at the anode. In the case 
of parallel reactions happening, a corrective term, designated 

, is employed to take into 
-

mental solubilization of the anode [40,41]. Generally, this term 

is smaller than 1 [42]; however, ϕ may be bigger than one if the 
chemical and the electrochemical oxidation routes of the metal 

-
verse equilibrium reactions that correspond to the acid/base, 

-
tion of these elimination routes is a function of pollutant species 
(Table 2) [5]. 

Dissolved contam-
inants Removal mechanism References

Precipitation [45]
Calcium cations Co-precipitation [46]

Phosphate anions Precipitation, adsorp-
tion, complexation [47,48]

Organic compounds Complexation, 
co-precipitation [49,50]

Fluoride anions Complexation, pre-
cipitation [41,51]

Arsenate anions [52]

Table 2: Equilibrium reactions of metal hydroxides with dis-
solved contaminants in the solution [5].

Nevertheless, concerning the positive ions liberated from the 
positive pole, the frequent event is the generation of Fe(OH)3(s)/
Al(OH)3(s) that show low solubility and easily settle. Consequent-
ly, dissolved contaminants in water can as well be attached by 

-
tion removal routes implicate [5]:
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■ 
happens through Fe(OH)3(s)/Al(OH)3(s), adsorption, and compl-
exation. As an example, phosphates are eliminated upon com-
plexing and/or by precipitating with Fe(OH)3(s)/Al(OH)3(s) and/
or by attachment on the latter. At the same time, the soluble or-
ganic matter reduction may be explained by the co-precipitation 
and/or to complexation and/or to the electrostatic attraction on 
the surface of Fe(OH)3(s)/Al(OH)3(s). Concerning the complexa-

hydrous iron moiety or Al(OH)3(s) (Equations (7) and (8)):

L-H(aq) + (OH)OFe(s) → L-OFe(s) + H2O   (7)

L-H(aq) + (OH)(OH)2Al(s) → L-(OH)2Al(s) + H2O (8)

■ Electro-oxidating anodically or electro-reducing ca-

thodically electro-active ions or molecules, like reducing Cr (VI) 
into Cr (III) may be followed by: (1) Cr (III) hydroxide settling 
[53], (2) reducing anionic nitrates into nitrite, (3) ammonia and 
nitrogen gas [54], and (4) oxidizing instead reducing if arsenic 
As (III) is oxidized into arsenic As(V) [55]. It was mentioned that 
heavy metals could as well go through electro-reducing cathod-
ically throughout the electrochemical coagulation operation 
[56,57].

■ Adsorbing directly contaminants on the electrodes 
surfaces: particularly for F- because of the electro-condensation 

-
ure 2). Practically, there is frequently a dominant mechanism for 
each pollutant depending on the type of this contaminant [5]. 

Figure 2: Principal mechanisms of dissolved contamination removal throughout EC [5].

Mechanism Description
Compression of the double layer -

the bulk solution and conducts to decreasing the repulsive forces among particles [49].
Charge neutralization Charge neutralization is realized through adsorption of ionic metal species/hydronium 

cations/hydroxyl anions or by the precipitation of charged hydroxide precipitates onto the 

may be illustrated through a variation of the zeta potential throughout the isoelectric point.
Sweep coagulation Colloids entrapment (enmeshment mechanism or sweep coagulation): Hydroxide precip-

dominates around pH 7 [65].

Table 3: Destabilization mechanisms of colloidal particles [5].

Frequent cases are listed in Table 2, and more information may 
be noted in survey articles on EC [22,54]. 

Simultaneously, colloids and emulsions are as well neutralized 

through injecting coagulant without interruption from elec-

penchant of colloids to destabilize or to persist distinctly and 
scattered is a consequence of the net inter-particles force that is 
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envisaged upon the addition of opposing forces among the at-
tractive van der Waals and the repulsive forces of the electrical 

approximation [63]. Neutralizing routes are listed in Table 3 [5]. 
During the EC operation, these neutralization routes (Figure 3) 
can happen together or one by one following the characteristics 
of the water/wastewater to remedy, the contaminants to be elim-
inated, the working situations (particularly electric current), and 
the type of the metal. Opposite to dissolved contaminants, the 
controlling pathway is, consequently, more laborious to describe 
since it is frequently more related to working situations than on 

Figure 3: Principal mechanisms of insoluble colloidal contamination reduction employing EC [5].

-
bilized colloids and the precipitates [66,67]. Flocculation perfor-

and the collision velocity of colloids [5,49]. 

Since reducing dissolved matters implicates attachment and en-
trapment, the routes of dissolved and solid matters are in them-

may thus be eliminated physically from water, in the device or 
employing a downstream process (Figure 4). In the recepient, 

-
cantation [68,69]. Moreover, decantation and EF may as well be 

Figure 4: Principal mechanisms of EC sludge elimination [5].

employed as downstream processes; however, in this situation, 
additional downstream techniques are accessible for sludge elim-

Case of Al electrodes

For Al electrodes, only just the half-oxidation reaction among 
Al3+/Al pursues Equation (1), because Z = 3. More than the 
chemical equations presented above, additional monomeric spe-

cies are produced from the instantaneous hydrolysis of Al3+ cat-
ions following the acid/base reactions (Equations (9)-(12)) and 
Al3+ amount [5,38].

Al3+ + H2O → Al(OH)2+ + H+                        (9)

Al(OH)2+ + H2O → Al(OH)2
+ + H+                     (10)

Al(OH)2+ + H2O → Al(OH)3 + H+                          (11)

Al(OH)3 + H2O → Al(OH)4
- + H+                          (12)
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Reaction pK
Al3+ + H2O = Al(OH)2+ + H+ 4.997
Al3+ + 2H2O = Al(OH)2

+ + 2H+ 10.094
Al3+ + 3H2O = Al(OH)3(aq) + 3H+ 16.791
Al3+ + 3H2O = Al(OH)3(s) + 3H+ (amorphous) 8.578
Al3+ + 2H2O = AlO(OH)(s) + 3H+ (boehmite) 10.800
Al3+ + 4H2O = Al(OH)4

- + 4H+ 22.688
Reaction E° (V)
Al3+ +3e- = Al(s) -0.41

Table 4: Equilibrium constant (pK) and standard reduction potential aluminum species (E° (V)) of Al and Fe species [5].

Aluminum speciation and partition may be drawn from E-pH 
Pourbaix diagrams if the implied reactions are under thermody-

-
stants for acid/base reactions and standard reduction potentials 
listed in Table 4 [5]. 

Practically, dissolved Al3+ cations dominate if pH is less high than 

than 10, during the time that the insoluble Al(OH)3(s) form takes 
control apart from that [5].

Al(OH)15
3+, Al7(OH)17

4+, Al8(OH)20
4+ and Al13O4(OH)24

7+

Lewis acidity of aluminum equilibrates the generation of OH– 

-
fore, monomeric and polymeric species provoke lately the pro-
duction of the amorphous Al(OH)3(s)
important surface areas useful for fast adsorbing dissolved or-
ganic matters and trapping colloids [70-73]:

nAl(OH)3 → Aln(OH)3n                          (13)

Auxiliary reactions can happen on the electrodes because of a 
simple chemical attack of aluminum under acid or alkaline con-
ditions, respectively [8,37]:

2Al + 6H+ → 2Al3+ + 3H2                       (14)

2Al + 6H2O + 2OH- → 2Al(OH)4
- + 3H2           (15)

EC process overpasses the expected level predicted using Fara-
day's law [5]. Consequently, the faradic yield φ is more important 
than 100% and may attain 200% [38].

A problematic issue of EC technique is the passivation of the 
cathode since it elevates both the cell voltage and the energy 

-
ed through optimizing the current reversal frequency [74] or 
NaCl injection to accelerate pitting corrosion upon a chemical 
reaction between Cl-

corrosion of dissolved Al electrodes is a function of two mech-
anisms [75]:

the amount of supporting electrolyte [76] and the current densi-

-, Br-, I-, F-, ClO4
-, 

OH-, SO4
2-

Epit (V) diminishes with the logarithm of chloride concentration 
(ppm), as illustrated through Equation (16) [38]:

Epit=1.75-0.72×Ln[Cl- ]                                                       (16)

corrosion in the existence of chloride ions may be described [78]:

2Al + 6HCl → 2AlCl3 + 3H2                      (17)

AlCl3 + 3H2O → Al(OH)3 + 3HCl                  (18)

Case of Fe electrodes

aqueous medium through Fe-EC are more complicated than 
with Al, because anode oxidation may conduct either to ferrous 
or ferric cations [5,79,80]:

Fe → Fe2+ + 2e-(19)

Fe → Fe3+ + 3e-(20)

Fe2+ and Fe3+ may be hydrolyzed in the recipient. Moreover, they 
may generate several monomeric and polymeric species whose 
proportions are function of the Fe3+ level and the pH degree: 
Fe(OH)2+, Fe(OH)2

+, Fe(OH)2
4+, Fe(OH)4

-, Fe(H2O)5(OH)2+, 
Fe(H2O)4(OH)2+, Fe(H2O)8(OH)2

4+, Fe2(H2O)6(OH)4
2+ and 

Fe(OH)3
up the acid/base and equilibrium constants and standard reduc-
tion potentials of monomeric species [5]. 
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Reaction pK
Fe2+ + H2O = Fe(OH)+ + H+ 9.397
Fe2+ + 2H2O = Fe(OH)2 + 2H+ 20.494
Fe2+ + 2H2O = Fe(OH)2(s) + 2H+ 13.564
Fe2+ + 2H2O = Fe(OH)3

- + 2H+ 28.991
Fe3+ + H2O = Fe(OH)2+ + H+ 2.187
Fe3+ + 2H2O = Fe(OH)+ + 2H+ 4.594
Fe3+ + 3H2O = Fe(OH)3 + 3H+ 12.56
Fe2+ + 2Fe3+ + 8H2O = Fe3(OH)8(s) + 8H+ 20.222
Fe3+ + 2H2O = αFeO(OH)(s) + 3H+ 0.491
Fe3+ + 2H2O = γFeO(OH)(s) + 3H+ 1.371
Fe3+ + 4H2O = Fe(OH)4

- + 4H+ 21.588
2Fe3+ + 2H2O = Fe2(OH)2

4+ + 2H+ 13.771
2Fe3+ + 4H2O = Fe3(OH)4

5+ + 4H+ 6.228
Reaction E° (V)
Fe2+ + 2e- = Fe(s) -0.41
Fe3+ + 3e-  = Fe(s) -0.04
Fe3+ + 2e- = Fe2+ +0.77
FeO4

2- + 3e- + 8H+ = Fe3+ + 4H2O +2.20

Table 5: Equilibrium constant and standard reduction potential of iron species [5].

In spite of certain confusion in large part of the literature about 
the implied stages of Fe-EC, contemporary references largely 
hypothesis that the anode oxidation liberates Fe2+ since it has 
been established that the dissolution proportion of Fe3+ may be 

2+ to Fe3+ is a function of 
pH and the dissolved oxygen amount [84]. When pH is acid, fer-
rous cations oxidize very slowly in the presence of dissolved O2 
(Equation (21)); however, if pH is neutral or alkaline, ferrous cat-
ions are instantaneously converted into Fe(OH)2 (Equation (22)) 
which is immediately oxidized by dissolved O2 to Fe(OH)3 (Eq. 
(23)) [5]:

Fe2+ + O2 + 2H2O → Fe3+ + 4OH-   (21)

Fe2+ + 2OH- → Fe(OH)2    (22)

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3                  (23)

As a result, several references mentioned that the Fe dissolution 
obeys to the Faraday's law with a faradic yield comprised in the 

-
-

ly solubilized evaluated using Faraday's law and the quantity of 
detected solubilized Fe founded on Z = 2 [5]. If pH is acid, ϕ is 
bigger than 100%; at the same time, if pH alkaline, the oppo-
site is correct. At smaller pH degrees, acceptable interpretations 
are identical to those mentioned for aluminum: chemical corro-
sion and pitting corrosion at both electrodes in the existence of 
certain ionic species, like Cl- [5,75]. At bigger pH degrees, the 

since additional reactions happen next to the anode, comprising 
oxygen formation (Equation (2)). If pH is alkaline, Fe oxidation 
conducts to Fe(III) production following Equation (20) in the 

Fe amount generated since Fe(III) production needs 3 electrons 
instead of 2 for Fe(II) and consequently, a more important cur-
rent level for attaining the equal Fe amount is necessitated [5,81]. 

convert into amorphous Fe(OH)3
quick adsorption of dissolved organic matters and enmeshing of 
colloids [85,86].

Moreover, there are two additional dissimilarities with aluminum 

is ~9-10 with iron electrodes even though pH is acid [84,87]. (2) 
Fe2+ is greatly dissolvable and thus not able of a performant col-
loidal particles destabilization upon Fe(OH)3, consequently in-

Fe-EC necessitates one or more of the next optimization meth-
ods for the Fe3+ formation [5,84]: 

• Aerating the water to augment the solubilized O2 amount 
and Fe2+ oxidation;

• Augmenting the pH level to 7.5 or bigger to encourage the 
Fe2+ oxidation velocity;

 Adding oxidant like Cl2 that may be formed upon oxidi-
zation of the Cl-
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ferrous oxidation happens in the bulk solution, following:

Cl2 + H2O → ClOH + Cl- + H+   (24)

2Fe2+ + 2HOCl → 2Fe3+ + 2OH- + Cl2  (25)

Considering the electric current consumed through Cl- oxida-
tion, this method is not performant unless the water/wastewater 
to purify holds more than 600 mg Cl-/L.

• Elevating the operation period to attain total ferrous oxida-
tion.

is the smaller cost of Fe, about 0.5-0.8 US$/kg, while Al cost is 
comprised between 1.5 and 3 US$/kg [5].

-

working situations like current or voltage and residence period, 
to (2) water characteristics like pH, alkalinity and conductivity 

-
trode surface area, electrode inter-distance) [5].

Impact of the electric current

I is the most important parameter of EC. 
Practically, EC depends on the current density i that is described 

continuity equation implies current conservation amongst the 
anode and the cathode; in fact, the current density may vary 
amongst the electrodes [5]:

I=iA×SA=iC×SC    (26)

Current density dictates the coagulant injection from the an-
ode and the hydrogen gas (H2) production from the cathode 

among contaminants, coagulant and gas micro-bubbles, and ul-

variation through EC operation in the form of a function of wa-
ter alkalinity. As a result, the current seems to form a dynamic 

-
lation stages [89] and encourages the electromigration of ions 
and charged colloidal particles [18].

Cell voltage is linked in the form of equilibrium potential, anode 

electric energy consumption may be formulated in the form of 
contact period t employing [5]:

0

t
P U I dt= × ×∫   

(27)

Since the electric energy needed for the EC method is related to 
the electric current and potential as described in Equation (27), 

EC may be performed either upon the (1) galvanostatic or (2) 

through monitoring and/or modifying the current imposed over 
electrodes; at the same time, for the second one, it is the imposed 
cell voltage that is monitored and/or changed in the form of 
quantity of coagulant needed to be liberated in the EC device [5]. 

-

not employed [91,92].

the EC performance. As an example, additional reactions can 
happen mainly, and overdosing may reverse the charge of the 
colloidal particles and disperse them another time conducting 
consequently to a diminution of the coagulant performance and 
a decrease of the anode lifetime [5].

characteristics and the concentration of contaminants to be elim-
inated from water; as an example, from 0.01 A/m2 to 880 A/m2. 
Optimum current density must be evaluated following additional 
working indicators. To employ the EC reactor during a large time 
without stopping for maintenance, the current density is proposed 
to be among 20 and 25 A/m2 [77]. Moreover, high current aug-
ments voltage and ohmic drop among anode and cathode. Ohmic 
drop or IR drop is a consequence of the ohmic resistance of the 
electrolyte R, which may be described as follows [5]:

d 1R = ×
S K

                                  
(28)

here d designates the inter-electrode gap, and k the water electric 
conductivity. If i augments, and U has tendency to the IR drop 

electric power changes as RI2

diminished upon reducing the gap among the plaques and aug-
menting the electrode surface area and the water conductivity 
[66]. Employing current reversal (switching anode and cathode 
electrically) is helpful to decrease maintenance price; however, 
its impact on contamination elimination is not ascertained until 
this moment.

Impact of the water pH 

Besides the electric current, pH is an additional fundamental pa-
-

es because it dictates the hydrolyzed metal species produced in 

in Section 2, investigating the Al and Fe speciation as a result 
from hydrolysis of their corresponding cations dictated upon 
thermodynamic equilibrium is crucial to explain the manner by 
which pH participates in imposing the stages of the electrochem-

-

the charged soluble monomeric species on their respective hy-
-

agulant species and their near contaminants may be determined 
from electrostatic interactions. Researchers such as Jiménez et al. 
[81] mentioned a detailed description taking into account these 
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stages, i.e., double-layer compression, neutralization and sweep 

of several contaminants depending on the predominating hy-

may be at the same degree understood throughout the thermo-
dynamics linked to the electrochemistry as described upon the 

diagram of a useful electrode material that, once superimposed 
on E-pH diagram of water, conducts to a diagram well described 

of thermodynamically stable metal species in the aqueous me-
dium, i.e., immunity, passivation, and corrosion, which lets to 
predict the corresponding electrode stability and its dissolution 
behavior in water throughout describing the stable aqueous spe-

Researchers [51] examined the Al and Fe speciation intending 
to determine the predominance diagrams of corresponding hy-
droxides and to evaluate a fraction of undissolved hydroxides as a 
function of pH taking into account only monomeric species. For 
Al electrode, it has been established that the quantity of undis-
solved Al(OH)3 augments importantly with elevating pH from 
4.5 to 7 to the detriment of aluminum hydroxide ions and the 
reverse is correct for a pH from 7 to 10; at the same time, amor-
phous metal hydroxide is not detected above the latter pH value. 
For the Fe electrode, the amount of undissolved iron hydroxide 

7, iron hydroxide ions are not present in the predominance di-

theoretical computation founded on equilibrium constants and 
pH for a concentration of 10-2 M for both electrode metals [5].

would augment for acidic pH; however, it may diminish for alka-

production at the cathode; while the diminution of pH is linked 
+ 

protons near the anode and the additional reactions like water 

-
ly elevated with Al electrodes due to the generation of aluminate 
anions at elevated pH [39].

It was mentioned that the bicarbonate alkalinity ameliorates at 
a small degree the contaminants elimination performance [96]; 
moreover, it aids to reduce the hardness throughout precipita-
tion of CaCO3 due to the hydroxyl anions formed upon water 
reduction near the cathode [5,46].

Impact of cell geometry and electrodes conception

-

recipient in which the treatment of water happens [5].

Electrodes arrangement: -
-

ter-electrode gap. Electrodes arrangement may either be easily 

Figure 5: Monopolar electrodes: (a) in parallel connections, 
(b) in series connections; (c) bipolar electrodes in series con-
nections [5].

constituted of an anode and a cathode or be formed of several 

complicated electrodes settlement may be categorized in mo-
nopolar and bipolar electrodes (Figure 5) [5]. Table 6 summariz-

In a general manner, monopolar electrodes necessitate a low 

electrodes that work under high tension and a smaller current 

-
mance considering that it has been established that at the same 
level BP-S may show an elevated EC performance [97,98]. Mo-

situations this electrodes arrangement provides an elevated con-
taminant reduction with a lower energy consumption [99,100], 
taking into account that bipolar electrode frequently consumes 

-
cult to manipulate and requires less maintenance cost through-

operation cost should at the same level be taken into account to 
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Description
Monopolar electrodes in parallel connection (MP-P) -

posed of cathodes and anodes arranged alternatively at the same anodic 
or cathodic potential, respectively. Each pair of cathode/anode cor-
responds to a small electrolytic cell in which the voltage is the same. 

the current of each electrolytic cell is additive.
Monopolar electrodes in series connections (MP-S) -

trodes is internally linked with each other and has no interconnections 

all the electrodes is the same, whereas the global voltage is the sum of 
tension in each electrolytic cell.

Bipolar electrodes in series connections (BP-S) BP-S comprise two outer electrodes attached to the electric power 
-

trodes (Figure. 6c). Outer electrodes are monopolar, and the inner ones 

implies that the opposite sides of each bipolar electrode are oppositely 
charged, the anodic dissolution happens on the positive side; at the 
same time, the negative side is prone to cathodic reactions [28].

Table 6:

More than the typical rectangular electrodes, there are additional 
geometrical forms like circular and cylindrical. Electrodes may 
be placed either vertically or horizontally in EC cell [5]. Even if 
being scarcely employed, horizontal electrodes in EC batch re-

[105].

Inter-electrode gap: It is well-known that if the IR-drop aug-

means that energy consumption diminishes with reducing the 
distance among the electrodes (Equations (27) and (28)) [5]. 
As the separation among the electrodes becomes lower, more 
electrochemically produced gas bubbles bring about turbulent 

well as to a high reaction rate amongst the coagulant species 
and contaminants [106]. Moreover, inter-electrode distance de-
scribes the contact period between the anode and the cathode 
for a continuous system and the period of operation for a batch 
reactor for attaining a wanted EC performance. For a compli-
cated electrode placement, inter-electrode separation dictates as 
well the number of electrodes to arrange in EC cell, if its volume 

-

settling features [5,74].

An in-depth discussion of the EC reactor conception may be 
found in the excellent review of Hakizimana et al. [5].   

-
ments if the electrolytic conductivity is elevated thanks to the 
reduction of the ohmic resistance of water. Moreover, the electric 
conductivity contributes to reducing the residence period need-
ed to attain the desired reduction percentage [108]. As a result, 
energy consumption (UI) is decreased. Usually, NaCl is em-
ployed to augment the electrolytic conductivity. In addition, Cl- 

anions to reduce the precipitation of calcium carbonate in hard 

surface [94]. If the current density is elevated, Cl- may as well be 
oxidized to active chlorine forms, like hypochlorite anions, that 
may oxidize organic matters [37] and ferrous ions [5] or partici-
pate in killing microorganisms in water [109-112]. To providing 

20% of the anion’s existent must be Cl- [77].

Nevertheless, there are the limits dictated on conductivity aug-
mentation in drinking water treatment [113]. Indeed, conductiv-
ity augmentation throughout the treatment of potable water us-

at 250 mg/L [5].

Usually, EC process is realized at ambient temperature. During 
EC operation, the water temperature may increase due to the 
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conductivity is elevated especially in the case of brackish water 
or seawater treatment [49,109]. In this case, some precautions 
should be taken such as reducing the applied voltage and de-
creasing the residence time to avoid overheating of the electric 
components and circuit [80]. 

EC Modeling
At the best of our knowledge, the consulted references through 
this review proved the absence of an algorithmic and direct 

-
-

hension of the respective contributions of several phenomena 
implied in EC, comprising electrochemical mechanisms, coag-

useful to enhance the conception and decrease equipment and 

operating costs simultaneously. It may easily ensure viable and 
correct solutions to EC issues, and therefore let us evaluate EC 

-
tions [5].

Hakizimana et al. [5] discussed the EC models previously men-
-

sist in reaching more comprehensions in EC devices conception. 
In a general manner, there are two principal categories of EC 
modeling: statistical modeling and modeling funded on knowl-
edge. Mathematical modeling usually is destined to searching 
optimum working parameters in which EC performance will be 
enhanced. Since EC is a complicated method, modeling founded 

physical or chemical process happening throughout the tech-
nique. Moreover, a particular focus is given to the Computation-
al Fluid Dynamics (CFD) modeling; for which computational 

Modeling Description
Statistical 

modeling

Taking into account several physical/chemical processes implicated in EC, the contaminants elimination per-
formance complicatedly is the function of the separated and additional impacts of the key technique parame-
ters (factors). Until now, in the largest part of the investigations performed on water/wastewater treatment us-
ing EC, optimization has been reached through modifying a single parameter at the same time maintaining all 

needs several practice tests and conducts to a weak optimization, like underestimation or overestimation of the 

parameters [114]. Response surface methodology (RSM) has been employed as a method in many studies to 
show the impacts of main process factors and their mutual contributions. RSM is used in multiple forms such 
as the full or partial factorial design (FD) [115,116], central composite design (CCD) [117-121], D-optimal 
design (DOP) [114], and Box-Behnken design (BBD) [122-125], etc.

Modeling 

funded 

on knowl-
edge

a)  Phenomenological models

In several studies, EC kinetics has been investigated to model and simulate the EC process. Several research-

-
ride concentration. Moreover, the elimination of contaminants like nitrates [54,126] and heavy metals by EC 
obeyed to an n-order kinetic model [127].

b) Modeling detailed mechanisms

1. Electrochemical phenomena

EC technique is mainly founded on electrochemistry since the electrochemical events are the initiating heart 
of the whole method. Electrochemistry is viewed as a complicated knowledge since it concerns at the same 
time charge transport, electrochemical kinetics, comprehension of electrodes interface and thermodynamics.

2. Adsorption

To better assess the stages implicated in EC and for modeling aim, pure adsorption isotherm and adsorption 
kinetics models have mainly been employed. Because the quantity of coagulant formed may be evaluated for 

-

on the hypothesis of thermodynamic monitoring are mainly the Langmuir and Freundlich isotherms and the 

-
ible adsorption that may be followed by multilayer formation [129].
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3.        Flocculation modeling

Flocculation is a complicated method during which two or more colliding destabilized colloids adhere to-

velocities attributed to gravity. Fixation is a consequence of the interparticle forces [130]. 

4.       Flotation and settling

appears thanks to buoyancy forces and settling thanks to gravity. EF is a function of current density, hydro-
gen micro-bubbles size (20-50 μm) and particle collection performance by the micro-bubbles [24]. Even if 
the current density imposes a convenient contaminant reduction mechanism, particularly in batch systems, 
it is not easy to entirely escape to either settling or EF in favor of the remaining stages, whatever the current 
density that may be employed.

5.       Complexation

Complexation model is a modern phenomenological model illustrating adsorption equilibrium that is im-
posed by complexation of suspended matter upon Fe or Al hydroxides for chemical oxygen demand removal.

Modeling uti-
lizing CFD comprehension and enhancement of the EC reactors design for the next future. Many authors have focused 

reaction rate distribution at the electrodes and the cell voltage. CFD has been employed to examine the distri-
bution of potential and current density because the latter shows the distribution of attack on electrode surface 

Table 7: EC process statistical modeling and modeling funded on knowledge [5].

-
rent density inside EC devices and predict complicated inherent 
processes, particularly if technical restrictions limit an experi-
mental method.

Table 7 summarizes the main features of the statistical modeling 
and modeling funded on knowledge of the EC process [5]. 

Conclusions
From this review, the main points drawn are listed as below:

1. Similar experiments, as jar test experiments used in 
conventional coagulation to determine the optimal coagulant 
doses, should be conceived using Zeta-meters to control the EC 
optimal residence time better and metal amount liberated. An 
empirical method would be suggested to facilitate a direct ap-
proach to calculate the EC optimal parameters following the (1) 
water main characteristics such as electric conductivity, pH, pol-
lutants concentrations and the (2) EC device features like metal 
type, reactor geometry and batch/continuous mode.

2. 
is near to suggest empirical/theoretical models to present the EC 

remain to be accomplished.   

3. 
Multiphysics are invited to insert the EC process in their elec-
trochemistry module in their future versions to better commer-

through the world.
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