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Idiopathic Inflammatory Myopathies (IIM) encompass a rare 
group of (auto)immune mediated muscle diseases characterized 
by muscle weakness and mononuclear muscle cell infiltrates. 
Since its first description, research has focused on describing 
effector and target cell interaction [1-4]. The immunobiological 
capacity of muscle cells has become increasingly clear over the 
last few decades. Skeletal Muscle Cells (SkMCs) are perfectly 
suited to function as non-professional Antigen-presenting Cells 
(APCs) by expressing MHC I/II and costimulatory molecules as 
well as secreting soluble molecules like cytokines and chemokines 
[5]. However, there is an ongoing debate about the role of SkMCs 
in the pathophysiology of IIMs.

Research in the field of immunology has gained fundamental 
insights into pathophysiological processes on the basis of exper-
imental animal models. In the context of neuroimmunological 
diseases like Multiple Sclerosis (MS), immunological animal 
models have helped to pave the way for novel therapeutic ap-
proaches [6]. In IIMs, there is still a lack in an animal model 
mimicking phenotypical, histopathological and immunological 
features of IIMs. Although genetically, infectious or immunologi-
cally induced models have been already proposed, all of these were 
only partially able to represent certain aspects of IIMs [7].

Genetically induced models have highlighted the role of 
non-immune mechanisms in the pathophysiology of IIMs. 
Especially for Spontaneous Inclusion Body Myositis (sIBM), 
conditional Knock-out Models (KO models) with in-tracellular 
deposits like Amyloid Precursor Protein (APP) or phosphorylated 
tau were able to resemble phenotypical features of myopathies [8-
12]. Similar results were obtained from a Major Histocompatibility 
Complex (MHC)-I KO-model accompanied by increased levels of 
endoplasmic reticulum stress markers [13-14]. Up to now, most 
of the genetically induced models lack of histopathological signs 
of mononuclear cell infiltrates, which is an important finding in 
IIMs [7]. Infectious mediated murine models resemble an acute 
monophasic systemic syndrome consist-ing of myositis, tendi-
nosis and myocarditis with a critically severe disease course and 

a high mortality rate [7]. In contrast, immunologically mediated 
models induced by immunization with muscle homogenates 
or a muscle spe-cific protein showed histopathological as-
pects of IIMs like infiltrating CD8+ T cells and muscle fiber 
surrounding cytokines or chemokines creating an immunolog-
ical microenvironment. However, up to now clinical signs of 
myo-pathy were absent in those models [7].

Since our group has gained experience in Experimental Auto-
immune Encephalomyelitis (EAE), the established animal model 
for MS, we put effort in establishing an immunological model 
fulfilling all the aforementioned fea-tures of IIMs [6-7]. On the 
example of Sugihara and colleagues and their C-protein Induced 
Model (CIM) [15], we are immunizing mice with fragments of the 
C-protein in order to resemble phenotypical and histopathological 
signs of IIMs [7]. This will be a critical step in order to test potential 
molecules in the context of this model.

During the last decade, our group has focused on two-pore 
domain potassium channels (K2P-channels), a certain fami-
ly of potassium channels formerly termed as “leak channels”, 
in the context of neuroimmunological disease like MS. We 
were able to show a modulating effect of certain K2P-channels 
in the disease course of EAE by influ-encing effector functions 
of CD4+ and CD8+ T cells or target cells like endothelial cells 
[16-18]. Recently, we were able to show that different K2P-channels 
are functionally expressed in SkMCs with an impact on muscle 
cell differ-entiation and electrophysiological parameters like po-
tassium current, resting membrane potential and consequently 
calcium influx [19]. In the context of IIMs, we are interested 
in the influence of K2P-channels on the aforemen-tioned 
immunobiological functions of SkMCs with a tendency of 
anti-inflammatory properties (data not pub-lished). Es-
tablished immunological models are critically necessary to 
prove this hypothesis with the aid of K2P-KO mice.

However, there is still a long way to go until these goals can be 
achieved. Gladly, research on IIMs has become more popular 
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over the last few decades [7]. Feature investigations should take 
putative approaches like humanized animal models [20-21] or 
the concept of exercise/injury induced muscle immunology 
[22-24] into account in order to pave the way to enlighten the 
pathophysiology of IIMs and enable putative pharmacological 
treatments.
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